Vapour barrier
As warm, moist internal air permeates through the external envelope of a building towards the outside, it will tend to cool. When it reaches its ‘dew point’ temperature, the moisture it holds will begin to condense as water. If this happens within the structure of the building itself, this is known as interstitial condensation.
If interstitial condensation occurs within the inner skin of the building envelope, it can cause problems such as:
- Mould growth, migration of salts, mildew and staining.
- Corrosion and decay of the building fabric.
- Frost damage.
- Poor performance of insulation.
To prevent this, vapour control layers (VCL) or vapour barriers are positioned on the warm side of the structure, preventing the warm moist air from penetrating to a point where it might reach its dew point temperature. In a traditional cavity wall construction for example, a vapour barrier might be introduced between the cavity insulation and the inner masonry skin.
Vapour barriers might also be used in timber frame constructions, roof and floor constructions as well as in high humidity buildings such as swimming pools and factories.
Care must be taken to ensure that vapour barriers are installed properly, so that they are continuous, and that joints, edges, junctions, cuts and penetrations are sealed. Particular care must be taken around openings such as ceiling hatches, and service penetrations such as cables, ducts, sockets, light fittings, and so on.
As well as preventing interstitial condensation, vapour barriers can improve the airtightness of the buildings. However, typically vapour barriers have a very low permeability, but are not completely airtight. Where they are airtight, they may be described as air and vapour control layers (AVCLs). Preventing the passage of air through the structure, can improve its thermal performance. In addition, some vapour barriers may include a low-e (low emissivity) metalised foil in their construction to improve thermal efficiency.
Vapour barriers may include an adhesive face, or adhesive laps and may have some ‘elastomric’ properties, giving a limited self-sealing capability if penetrated.
Some types of rigid foam insulation have a foil bonded to their surface which will act as a vapour barrier, however, care must still be taken to ensure that joints and edges are properly sealed.
[edit] Related articles on Designing Buildings Wiki
Featured articles and news
CIOB Ireland launches manifesto for 2024 General Election
A vision for a sustainable, high-quality built environment that benefits all members of society.
Local leaders gain new powers to support local high streets
High Street Rental Auctions to be introduced from December.
Infrastructure sector posts second gain for October
With a boost for housebuilder and commercial developer contract awards.
Sustainable construction design teams survey
Shaping the Future of Sustainable Design: Your Voice Matters.
COP29; impacts of construction and updates
Amid criticism, open letters and calls for reform.
The properties of conservation rooflights
Things to consider when choosing the right product.
Adapting to meet changing needs.
London Build: A festival of construction
Co-located with the London Build Fire & Security Expo.
Tasked with locating groups of 10,000 homes with opportunity.
Delivering radical reform in the UK energy market
What are the benefits, barriers and underlying principles.
Information Management Initiative IMI
Building sector-transforming capabilities in emerging technologies.
Recent study of UK households reveals chilling home truths
Poor insulation, EPC knowledge and lack of understanding as to what retrofit might offer.
Embodied Carbon in the Built Environment
Overview, regulations, detail calculations and much more.
Why the construction sector must embrace workplace mental health support
Let’s talk; more importantly now, than ever.
Ensuring the trustworthiness of AI systems
A key growth area, including impacts for construction.